teleconsult

Teleradiology

Designing and delivering teleradiology services which meet your specific requirements is our forte. Our Board Certified radiologists offer preliminary, final and subspecialty reports 24/7/365. Turnaround times are set to match your needs. Our technical support center provides state of the art PACS/RIS and communication technology, which securely integrates with your current Information Systems.

Telepathology

Teleconsult pathologists offer services ranging from remote reporting of cyto- and histological cases, to lab design and quality assurance programs. We support the most basic lab set ups with second opinions and on-line consultations, and connect more advanced labs to our web based telepathology platform for routine reporting of diverse cases.

Telemicrobiology

Our telemicrobiology services are offered by Dutch and UK Board Certified clinical microbiologists with sub-specialties in the fields of general microbiology, bacteriology, virology, parasitology, mycology, molecular diagnostics and epidemiology. Our clinical microbiologists are mainly active in clinical hospital settings, keeping them closely connected and in tune with daily clinical situations and challenges. This creates affinity with remote cases and ensures the up-to-date knowledge our customers require.

Locum Placement

Our recruitment division recruits certified radiologists, pathologists and micro biologists for part time and full time positions. In our 15 year history we successfully recruited and placed medical specialists in over 60 hospitals and clinics across the globe

Screening & Trials

From its worldwide network of Board Certified medical specialists, TeleConsult creates subspecialty teams for specific screening and clinical trial assignments. In 2012 TeleConsult’s dedicated breast radiologists were selected by the Dutch Breast Cancer Screening program to interpret its screening mammography studies.

We are hiring

We recruit, select and place sub-specialty, EU educated and certified radiologists, pathologists and microbiologists for short and long term positions. Our reputation has been built on a foundation of providing highly skilled doctors and the following core values: Professionalism, Value for money, Quality, Reliability and Integrity. Interested in joining our team? Register now!

Specialist care at your fingertips

Whether you are a hospital  department, diagnostic center or laboratory, Teleconsult doctors and IT experts bring optimal efficiency to your  workflow. A thorough analysis of your current situation, needs and requirements results in a balanced work flow management plan.

Teleconsult does not have any volume requirement and you are in full control to decide when to outsource studies to a Teleconsult doctor. To find out how your clinic or department will benefit from working with Teleconsult Europe, please contact us.

  • INCREASE YOUR SUBSPECIALTY OFFERINGS

  • Balance on- and off site tasks

  • INCREASE PRODUCTIVITY AND PROFITABILITY

  • MAXIMUM USE OF RADIOLOGY AND LABORATORY EQUIPMENT

  • 24/7/365 AVAILABILITY OF EXPERTISE

About Teleconsult

Founded in 2007 by Dutch radiologists, TeleConsult Europe (TCE) offers radiology services to hospitals, clinics, diagnostic centers, laboratories, medical services companies and the Dutch Government.

TCE’s mission is to provide its customers with tailored telemedicine solutions. Since its inception, TCE carefully listened to wishes and needs of its clients. This resulted in an array of interchangeable services providing radiology and pathology departments with high quality, cost efficient, flexible on- and off-site solutions.

Today TCE’s solutions consist of a combination of an on-site physician workforce, teleradiology, telepathology, and IT services. Our Western Board certified radiologists and pathologists perform reading services for a broad array of institutions varying from a 24/7 emergency reading service for hospitals and clinics, to screening services for the famous Dutch Breast Cancer Screening Program.

The primary objective of our highly trained physicians and staff is to enable our clients to provide optimal patient care and diagnostic services by placing quality and value first. Our synergetic modules provide tailored services to hospitals, clinics and imaging centers at any location on the globe. Whether you need an on-site physician, reports through telemedicine or a combination of both, we help you to realize an optimal and cost efficient workflow.

New study finds that proton therapy has fewer side effects in esophageal cancer patients

Significant differences from current radiation therapies

New research by scientists at the University of Maryland School of Medicine has found that esophageal cancer patients treated with proton therapy experienced significantly less toxic side effects than patients treated with older radiation therapies.

Working with colleagues at the Mayo Clinic in Rochester, Minnesota and the MD Anderson Cancer Center in Dallas, Texas, Michael Chuong, MD, an assistant professor of radiation oncology at the school, compared two kinds of X-ray radiation with proton therapy, an innovative, precise approach that targets tumors while minimizing harm to surrounding tissues.

The researchers looked at nearly 600 patients and found that proton therapy resulted in a significantly lower number of side effects, including nausea, blood abnormalities and loss of appetite. The results were presented at the annual conference of the Particle Therapy Cooperative Group, held in San Diego.

"This evidence underscores the precision of proton therapy, and how it can really make a difference in cancer patients' lives," said Dr. Chuong.

Patients with esophageal cancer can suffer a range of side effects, including nausea, fatigue, lack of appetite, blood abnormalities and lung and heart problems. Proton therapy did not make a difference in all of these side effects, but had significant effects on several.

The results have particular relevance for the University of Maryland School of Medicine; this fall the school will open the Maryland Proton Treatment Center (MPTC). The center will provide one of the newest and highly precise forms of radiation therapy available, pencil beam scanning (PBS), which targets tumors while significantly decreasing radiation doses to healthy tissue. This technique can precisely direct radiation to the most difficult-to-reach tumors.

Proton therapy is just one of several new methods for treating cancer. Others include:

  • Selective Internal Radiation Therapy, a precision modality for treating patients with particularly difficult-to-remove tumors involving the liver such as those from colorectal cancers;
  • Gammapod, a new, high-precision, noninvasive method of treating early-stage breast cancer;
  • Thermal Therapies, the use of "heat" in treating a broad spectrum of malignancies.

The treatment works well for many kinds of tumors, including those found in the brain, esophagus, lung, head and neck, prostate, liver, spinal cord and gastrointestinal system. It is also an important option for children with cancer and is expected to become an important option for some types of breast cancer. While most cancer patients are well served with today's state-of-the-art radiation therapy technology, up to 30 percent are expected to have a greater benefit from the new form of targeted proton beam therapy.

Located at the University of Maryland BioPark, the 110,000 square-foot, $200 million center is expected to treat about 2,000 patients a year.



Powered By WizardRSS.com | Full Text RSS Feed

New survey shows 36-percent increase in pediatric patients treated with proton therapy

Most pediatric proton patients are younger than 10, with brain and spinal cord tumors

Results from a new nationwide survey indicate a steady increase in the number of pediatric patients who are being treated with proton radiation therapy for cancerous and non-cancerous tumors.

The research, led by Andrew L. Chang, M.D., medical director of pediatrics with the Scripps Proton Therapy Center, was presented during the 54th annual Particle Therapy Co-Operative Group (PTCOG) Conference in San Diego.

Based on a survey of all proton therapy centers in the United States, the number of pediatric patients treated with proton radiation therapy has grown to 722 in 2013, a 36-percent increase from the 465 patients treated in 2010.

"Children are particularly vulnerable to the late side effects of radiation exposure to normal tissue, including treatment-related chronic disease and secondary cancers," said Dr. Chang. "So we view this as a positive sign that more children are gaining access to this more precise form of radiation delivery."

Of pediatric patients treated with proton therapy in 2013, 56 percent were younger than age 10 and 26 percent were enrolled on multi-institutional registry studies. The most common tumor diagnoses treated included ependymoma (brain), medulloblastoma (brain and spinal cord) and low-grade glioma (brain).

A recent industry report showed that there are currently 16 proton therapy centers operating in the United States and the number is forecast to grow to 27 by 2017. The Mayo Clinic is expected to begin treating patients at its first proton center in June 2015.

Proton therapy is a form of external beam radiation that treats tumors with heavy charged particles, which can be placed precisely at the site of the tumor. Scripps Proton Therapy Center, which opened in February 2014, is the nation's only center to exclusively offer the most precise proton delivery technology available, pencil-beam scanning. Scripps Health provides the center's clinical management services and Scripps Clinic oversees the medical services. Advanced Particle Therapy is the center's developer and owner. Scripps has established an affiliation with Rady Children's Hospital-San Diego for pediatric care at the center.



Powered By WizardRSS.com | Full Text RSS Feed

New research leads to FDA approval of first drug to treat radiation sickness

As a result of research performed by scientists at the University of Maryland School of Medicine (UM SOM), the U.S. Food and Drug Administration has approved the use of a drug to treat the deleterious effects of radiation exposure following a nuclear incident. The drug, Neupogen®, is the first ever approved for the treatment of acute radiation injury.

The research was done by Thomas J. MacVittie, PhD, professor, and Ann M. Farese, MA, MS, assistant professor, both in the University of Maryland School of Medicine (UM SOM) Department of Radiation Oncology's Division of Translational Radiation Sciences. The investigators did their research in a non-human clinical model of high-dose radiation.

"Our research shows that this drug works to increase survival by protecting blood cells," said Dr. MacVittie, who is considered one of the nation's leading experts on radiation research. "That is a significant advancement, because the drug can now be used as a safe and effective treatment for the blood cell effects of severe radiation poisoning."

Radiation damages the bone marrow, and as a result decreases production of infection-fighting white blood cells. Neupogen® counteracts these effects. The drug, which is made by Amgen, Inc., was first approved in 1991 to treat cancer patients receiving chemotherapy. Although doctors may use it "off label" for other indications, the research and the resulting approval would speed up access to and use of the drug in the event of a nuclear incident.

This planning is already under way. In 2013, the Biomedical Advanced Research and Development Authority (BARDA), an arm of the Department of Health and Human Services, bought $157 million worth of Neupogen® for stockpiles around the country in case of nuclear accident or attack.

Neupogen® is one of several "dual-use" drugs that are being examined for their potential use as countermeasures in nuclear incidents. These drugs have everyday medical uses, but also may be helpful in treating radiation-related illness in nuclear events. Dr. MacVittie and Ms. Farese are continuing their research on other dual-use countermeasures to radiation. They are now focusing on remedies for other aspects of radiation injury, including problems with the gastrointestinal tract and the lungs.

The research builds on 40 years of work that Dr. MacVittie and his team have conducted in the field of radiation research, during which they have helped to define the field. The Neupogen study is also part of a broad portfolio of research being conducted by faculty in the Department of Radiation Oncology. Among these are Minesh Mehta, MD, the medical director of the Maryland Proton Treatment Center, who is focusing on research into thoracic oncology, neuro-oncology, integrating imaging advances with radiation therapy, and innovative applications of new radiation therapy technologies to test biological concepts. Another researcher in the department is Zeljko Vujaskovic, MD, PhD, director of the Division of Translational Radiation Sciences; he is doing research on identifying potential biomarkers predicting individual patient risk for injury, and to develop novel therapeutic interventions/strategies to prevent, mitigate, or treat radiation injury.

"In terms of both research and treatment, our department is leading the way in developing the most effective discovery-based clinical applications to help protect and heal patients," says William F. Regine, MD, professor and Isadore & Fannie Schneider Foxman Endowed Chair in Radiation Oncology at the UM SOM.

He added that research has served as the foundation for the Department of Radiation Oncology's recent development of four clinical modalities for the treatment of cancer through radiation:

  • Proton Treatment, a precise approach to cancer, which targets tumors while minimizing harm to surrounding tissues. Proton treatment uses protons traveling at about two-thirds the speed of light to precisely deliver beams of radiation to the tumor. This treatment will be available in the new 110,000 sq ft Maryland Proton Treatment Center before the end of the year;
  • Selective Internal Radiation Therapy, a precision modality for treating patients with particularly difficult to remove tumors involving the liver such as those from colorectal cancers;
  • Gammapod, a new, high-precision, noninvasive method of treating early-stage breast cancer;
  • Thermal Therapies, the use of "heat" in treating a broad spectrum of malignancies.

"The Department of Radiation Oncology's work is just one example of how the School of Medicine is discovering innovative ways to repurpose existing drugs that are able fight a broader array of critical diseases," said Dean E. Albert Reece, MD, PhD, MBA, who is also the vice president for Medical Affairs, University of Maryland, and the John Z. and Akiko K. Bowers Distinguished Professor and Dean of the School of Medicine. "We are particularly proud of the Neupogen research as it is not only important scientifically; it is crucial for our country's public health and its national security."



Powered By WizardRSS.com | Full Text RSS Feed